AIVM API Reference
This document provides detailed information about all available functions and classes in the AIVM client library.
Functions
Model Management
upload_model(model_path, model_name, model_type)
Uploads a custom model to the AIVM server.
Parameters:
model_path
(str): Path to the model filemodel_name
(str): Name to identify the modelmodel_type
(ModelType): Type of the model (must be one of the supported types)
Example:
import aivm_client as aic
# Upload a custom model directly
aic.upload_model("path/to/model.pth", "MyCustomModel", aic.ModelType.LeNet5)
upload_bert_tiny_model(model_path, model_name)
Convenience function to upload a BertTiny model.
Parameters:
model_path
(str): Path to the model filemodel_name
(str): Name to identify the model
Example:
import aivm_client as aic
# Upload a custom BertTiny model
aic.upload_bert_tiny_model("path/to/bert_model.pth", "MyBertModel")
upload_lenet5_model(model_path, model_name)
Convenience function to upload a LeNet5 model.
Parameters:
model_path
(str): Path to the model filemodel_name
(str): Name to identify the model
Example:
import aivm_client as aic
# Upload a custom LeNet5 model
aic.upload_lenet5_model("path/to/lenet_model.pth", "MyLeNetModel")
Inference
get_prediction(inputs, model, model_type=None)
Performs secure inference using encrypted inputs.
Parameters:
inputs
(ArithmeticSharedTensor): Encrypted input tensormodel
(str): Name of the model to usemodel_type
(ModelType, optional): Type of the model if using raw cryptensor
Returns:
- Prediction result from the model
Raises:
- ValueError: If inputs are not of a supported cryptensor type and no model_type is provided
Example:
import aivm_client as aic
import torch
# For LeNet5
input_tensor = torch.randn(1, 1, 28, 28)
encrypted_input = aic.LeNet5Cryptensor(input_tensor)
result = aic.get_prediction(encrypted_input, "LeNet5MNIST")
# For BertTiny
sentence = "Hello, this is a test message"
tokens = aic.tokenize(sentence)
encrypted_input = aic.BertTinyCryptensor(*tokens)
result = aic.get_prediction(encrypted_input, "BertTinySpam")
get_supported_models()
Retrieves a list of all models available for inference.
Returns:
- list: Names of supported models
Example:
import aivm_client as aic
# Get list of available models
models = aic.get_supported_models()
print(f"Available models: {models}")
Text Processing
tokenize(sentence)
Tokenizes input text for use with BertTiny models.
Parameters:
sentence
(str): Input text to tokenize
Returns:
- tuple: (input_ids, attention_mask) tensors
Example:
import aivm_client as aic
# Tokenize text for BertTiny
sentence = "This is a sample text for sentiment analysis"
tokens = aic.tokenize(sentence)
encrypted_input = aic.BertTinyCryptensor(*tokens)
Classes
BertTinyCryptensor
Specialized cryptensor for BertTiny model inputs.
Inherits from: ArithmeticSharedTensor
Parameters:
*inputs
(torch.Tensor): Two tensors (tokens and attention_mask), each of shape (1, 128)
Example:
import aivm_client as aic
# Create encrypted input for BertTiny
sentence = "Sample text for classification"
tokens = aic.tokenize(sentence)
encrypted_input = aic.BertTinyCryptensor(*tokens)
LeNet5Cryptensor
Specialized cryptensor for LeNet5 model inputs.
Inherits from: ArithmeticSharedTensor
Parameters:
inputs
(torch.Tensor): Input tensor for the LeNet5 model
Example:
import aivm_client as aic
import torch
# Create encrypted input for LeNet5
image = torch.randn(28, 28) # Sample input image
encrypted_input = aic.LeNet5Cryptensor(image)
Complete Usage Example
Here's a complete example showing how to use the AIVM client for both BertTiny and LeNet5 models:
import aivm_client as aic
import torch
# List available models
models = aic.get_supported_models()
print(f"Available models: {models}")
# Example with LeNet5
image_input = torch.randn(28, 28)
encrypted_image = aic.LeNet5Cryptensor(image_input)
digit_prediction = aic.get_prediction(encrypted_image, "LeNet5MNIST")
# Example with BertTiny
text_input = "This is a sample message for spam detection"
tokens = aic.tokenize(text_input)
encrypted_text = aic.BertTinyCryptensor(*tokens)
spam_prediction = aic.get_prediction(encrypted_text, "BertTinySpam")
# Upload custom models
aic.upload_lenet5_model("path/to/custom_lenet.pth", "MyCustomLeNet")
aic.upload_bert_tiny_model("path/to/custom_bert.pth", "MyCustomBert")